

Knowledge Enhanced Multi-Interest Network for the Generation of Recommendation Candidates

Danyang Liu* ldy591@mail.ustc.edu.cn University of Science and Technology of China & Meituan Hefei, China Yuji Yang* Meituan Beijing, China yangyuji02@meituan.com Mengdi Zhang Meituan Beijing, China zhangmengdi02@meituan.com

Wei Wu Meituan Beijing, China wuwei19850318@gmail.com Xing Xie Microsoft Research Beijing, China xingx@microsoft.com Guangzhong Sun University of Science and Technology of China Hefei, China gzsun@ustc.edu.cn

https://github.com/danyang-liu/KEMI

Reported by Yabo Yin

- CIKM 2022

Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence

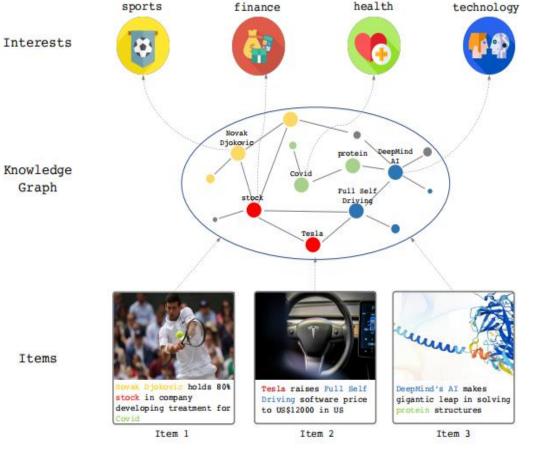
1.Introduction

2.Method

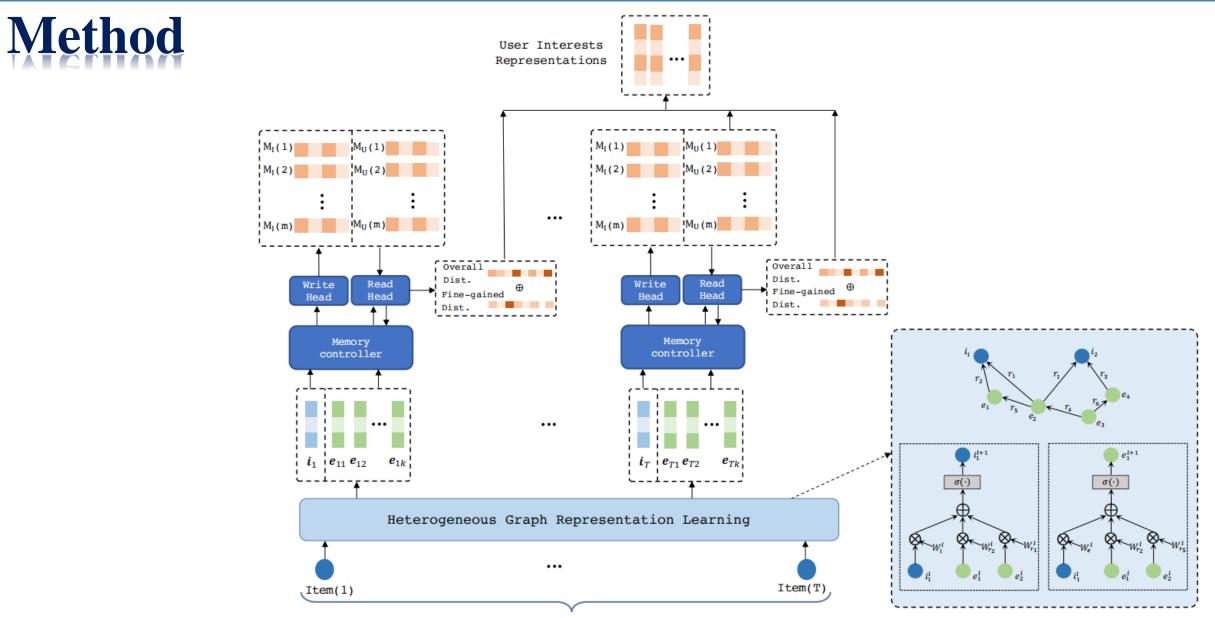
3.Experiments

Introduction

- 1. Previous methods cluster users' behavior sequences into different groups to represent different interests, ignoring that an item may contain multiple fine-grained interests.
- Explaining user interests at the level of items is rather vague 2. and not convincing.



Interests



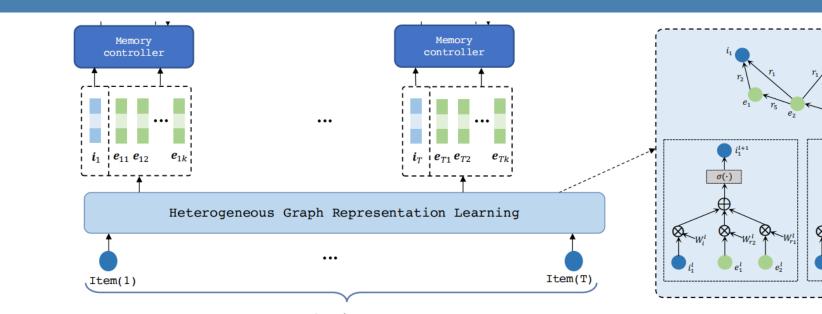
User Behavior Sequence

Preliminaries

user historical behaviors $H_u = \{i_1^u, i_2^u, ..., i_T^u\}$ Each item $i \in I$ $E_i = \{e_1^i, e_2^i, ..., e_k^i\}$. The core task $\mathbf{V}_u = f_{user}(H_u)$ (1)

where
$$\mathbf{V}_u = \{\mathbf{v}_1^u, \mathbf{v}_2^u, ..., \mathbf{v}_m^u\} \in \mathbb{R}^{m \times d}$$
,

 e_1^{l+1}



Graph Representation Learning

 $\mathbf{h}_{v} = JK(\mathbf{h}_{v}^{0}, ..., \mathbf{h}_{v}^{n})$ ⁽²⁾

$$\mathbf{h}_{v}^{l+1} = U_{l}(\mathbf{h}_{v}^{l}, \mathbf{m}_{v}^{l+1})$$
(3)

$$\mathbf{h}_{v}^{0} = \begin{cases} \mathbf{h}_{v}^{0T} & v \in entities\\ concat(\mathbf{h}_{v}^{0B}, \mathbf{h}_{v}^{0T}) & v \in items \end{cases}$$

User Behavior Sequence

(4)

 $\mathbf{m}_{v}^{l+1} = \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_{i}^{r}} \frac{1}{c_{i,r}} \mathbf{W}_{r}^{(l)} \mathbf{h}_{j}^{(l)}$ (5)

where N_i^r denotes the set of neighbor indices of node i under relation $r \in R$. $c_{i,r}$ is a problem-specific normalization constant.

$$\mathbf{h}_{v}^{l+1} = \sigma \left(\mathbf{m}_{v}^{l+1} + \mathbf{W}_{0}^{l} \mathbf{h}_{i}^{l} \right)$$
(6)

In the time step of *t*, parameter of memory is indicated as M_t , which consists of *m* memory slots, representing *m* different interests. At time step *t*, we have $(\mathbf{i}_t, \{\mathbf{e}_t^1, \mathbf{e}_t^2, ..., \mathbf{e}_t^k\})$,

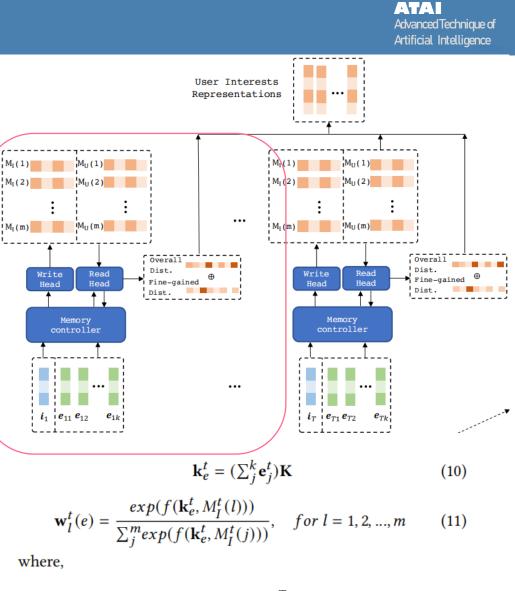
Read Interest Distributions:

$$\mathbf{k}_i^t = \mathbf{i}_t \mathbf{K} \tag{7}$$

$$\mathbf{w}_{l}^{t}(i) = \frac{exp(f(\mathbf{k}_{i}^{t}, M_{I}^{t}(l)))}{\sum_{j}^{m} exp(f(\mathbf{k}_{i}^{t}, M_{I}^{t}(j)))}, \quad for \ l = 1, 2, ..., m$$
(8)

where,

$$f(\mathbf{k}_i^t, M_I^t(j)) = \frac{\mathbf{k}_i^{tT} M_I^t(j)}{\left\|\mathbf{k}_i^t\right\| \left\|M_I^t(j)\right\|}$$
(9)



$$f(\mathbf{k}_{e}^{t}, M_{I}^{t}(j)) = \frac{\mathbf{k}_{e}^{tT} M_{I}^{t}(j)}{\left\|\mathbf{k}_{e}^{t}\right\| \left\|M_{I}^{t}(j)\right\|}$$
(12)

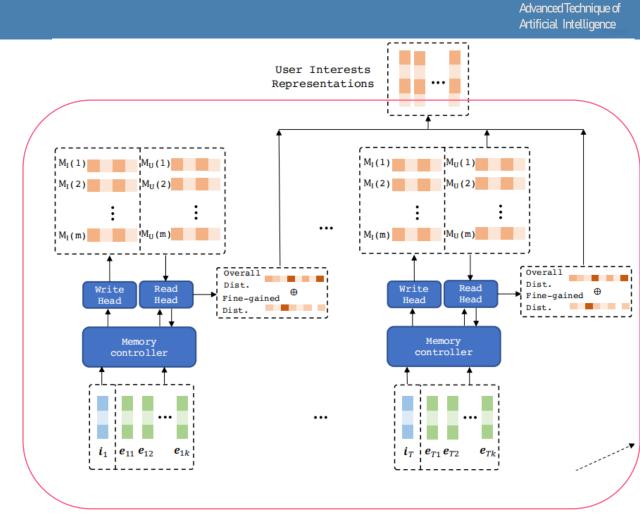
The interest distribution for item i_t for user u is:

$$\mathbf{w}_{u}^{t} = \alpha * \mathbf{w}^{t}(i) + (1 - \alpha) * \mathbf{w}^{t}(e)$$
(13)

$$\mathbf{a}_{i} = \left(\sum_{t=1}^{T} \mathbf{i}_{t} + \sum_{t=1}^{T} \sum_{j=1}^{k} \mathbf{e}_{t}^{j}\right) \mathbf{A}$$
(14)
$$\mathbf{e}_{i} = \left(\sum_{t=1}^{T} \mathbf{i}_{t} + \sum_{t=1}^{T} \sum_{j=1}^{k} \mathbf{e}_{t}^{j}\right) \mathbf{E}$$
(15)
$$\mathbf{M}_{I} = (1 - \mathbf{E}_{I}) \odot \mathbf{M}_{I} + \mathbf{A}_{I}$$
(16)

where **A** is add matrix in controller, **E** is erase matrix in controller, $\mathbf{E}_I = \mathbf{w}_u \otimes \mathbf{e}_i$, $\mathbf{A}_I = \mathbf{w}_u \otimes \mathbf{a}_i$, and \odot and \otimes means dot product and outer product respectively.

$$\mathbf{a}_{u}^{t} = (\mathbf{i}_{t} + \sum_{j=1}^{k} \mathbf{e}_{t}^{j})\mathbf{A}$$
(17)
$$\mathbf{e}_{u}^{t} = (\mathbf{i}_{t} + \sum_{j=1}^{k} \mathbf{e}_{t}^{j})\mathbf{E}$$
(18)
$$\mathbf{M}_{U}^{t} = (1 - \mathbf{E}_{U}^{t}) \odot \mathbf{M}_{U}^{t-1} + \mathbf{A}_{U}^{t}$$
(19)
where $\mathbf{E}_{U}^{t} = \mathbf{w}_{u}^{t} \otimes \mathbf{e}_{u}^{t} \text{ and } \mathbf{A}_{U}^{t} = \mathbf{w}_{u}^{t} \otimes \mathbf{a}_{u}^{t}.$



ATAI

$$\mathbf{V}_u = (\sum_{t=1}^T \mathbf{w}_u^t) \mathbf{M}_U^T$$

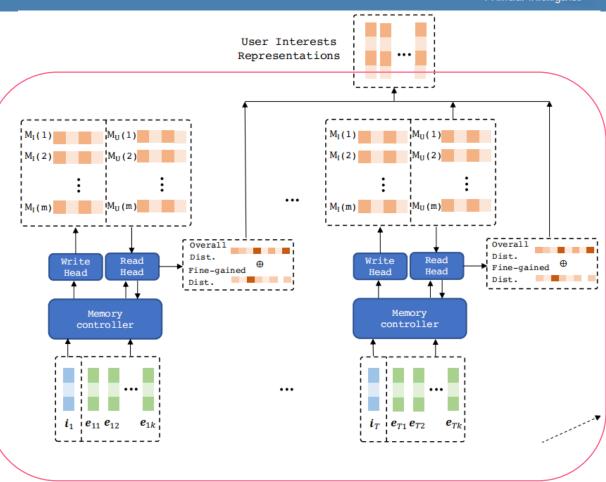
(20)

Learning

$$\mathcal{L}_i = KL(\mathbf{w}(i)|\mathbf{w}(e)) = \sum_{j=1}^m \sum_{t=1}^T w(i)_j^t \log \frac{w(i)_j^t}{w(e)_j^t}$$
(21)

$$\mathcal{L}_d = dist(\mathbf{v}_u^k, \mathbf{i}^k) \tag{22}$$

$$\mathcal{L} = \mathcal{L}_d + \lambda_1 \mathcal{L}_i + \lambda_2 \left\|\Phi\right\|_2^2 \tag{23}$$



	Microsoft News	Dianping Feed
# . users	1,000,000	100,000
# . items	161,013	915,493
#. interactions	24,155,470	1,518,490
#. associated entities per item	17.2	15.8
#. words per article	639	137

Table 2: Statistics of the two realistic datasets.

	Wikidata	Private KG
#. entities	3,275,149	2,502,554
#. triples	31,963,632	19,467,000
#. relations	1,091	47

Table 3: Statistics of the knowledge graphs.

	Dianping Feed Dataset					Microsoft News Dataset						
	Metrics	s@10	Metrics	s@50	Metrics	@100	Metric	s@10	Metrics	s@50	Metrics	@100
	Hit Rate	Recall	Hit Rate	Recall	Hit Rate	Recall	Hit Rate	Recall	Hit Rate	Recall	Hit Rate	Recall
Most Popular	5.713	1.014	15.74	3.215	23.28	5.385	1.659	0.526	1.696	0.536	1.704	0.537
Youtube DNN	11.36	2.586	30.69	8.081	41.54	12.44	5.832	1.492	14.87	3.814	22.29	6.079
MIND	11.81	2.830	31.89	8.900	43.19	13.39	3.113	0.752	12.77	3.318	20.93	5.728
Comirec	11.44	2.742	31.47	8.905	42.27	13.28	3.753	0.941	13.57	3.489	22.22	6.160
Octopus	11.49	2.768	31.99	8.913	42.89	13.12	5.845	1.543	15.60	3.616	23.90	6.198
MIMN	11.28	2.601	30.98	8.426	42.35	12.90	5.032	1.454	14.31	3.732	21.50	5.833
KEMI	12.19	2.889	33.50	8.976	46.47	13.81	6.198	1.808	16.58	4.088	26.35	6.621

Table 4: Model performance on two datasets. Bolded numbers are the best performance of each column. The results are reported in percentage (%).

Experiments

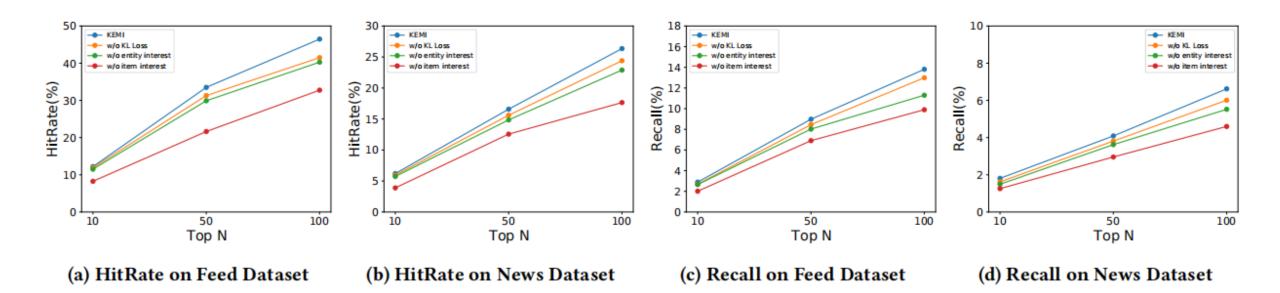


Figure 3: Ablation study on removing the constrained interest loss, the overall interest weight or the fine-grained interest weight on two datasets.

Interests	News Title	Knowledge Entity
Interest 1	News1: Lloyd: Coming off bench at World Cup "rock bottom of my entire career" News2: Premier League player Power Rankings News3: Lukaku brace at Bologna fires Inter top, Roma beat Napoli to go third	Premier League Cristiano Ronaldo World Cup FC Barcelona
Interest 2	News1: Amazon CEO Jeff Bezos is no longer the richest person in the world News2: Starbucks gives \$10 million to help boost small business in Chicago's neighborhoods News3: McDermott chief financial officer resigns following \$1.9 billion loss	CFO stock SoftBank credict card
Interest 3	News1: Why macOS Catalina is breaking so many apps, and what to do about it News2: Pixel 4 and 4 XL hands-on: Google ditches fingerprint scanner for face unlock News3: Xbox's latest safety feature lets you filter out offensive trash talk	Xbox macOS Catalina Pixel 4 Apple

Figure 4: An example of news and knowledge entities related to the different interest channels of our KEMI model

		Microsoft News			Dianping Feed			
		N=10	N=50	N=100	N=10	N=50	N=100	
m=1	HR@N	5.806	14.13	22.43	11.21	30.40	41.96	
	Recall@N	1.518	3.725	6.002	2.667	8.142	12.48	
m=5	HR@N	5.892	14.99	23.20	11.83	32.19	44.80	
	Recall@N	1.653	3.816	6.190	2.878	8.951	13.38	
m=10	HR@N	6.062	15.81	25.47	12.19	33.50	46.47	
	Recall@N	1.775	3.901	6.472	2.889	8.976	13.81	
m=20	HR@N	6.198	16.58	26.35	12.02	33.10	46.01	
	Recall@N	1.808	4.088	6.621	2.841	8.953	13.46	
m=30	HR@N	6.134	16.46	26.48	11.60	32.18	44.63	
	Recall@N	1.769	3.957	6.608	2.841	8.880	43.69	

Table 5: Model performance w.r.t. different number of interests, the results are reported in percentage (%). Bolded numbers are the best performance.

# users	# items	#interactions
2,659,562	2,123,510	160,409,918

Table 6: Statistics of the industrial large dataset

sults demonstrate that our KEMI model can improve Recall@100 and HR@100 with 3.73% and 6.25% compared to the best baseline results respectively.

Our training process is formalized as Alg. 1

Algorithm 1: Training Procedure of KEMI **Input:** user behavior sequence H_u ; knowledge graph \mathcal{G} ; **Output:** user representation function *fuser*; 1 Randomly initialize all parameters; 2 while not converge do for each user u in mini-batch U_i do 3 for item i at time step t do 4 Learn unified representations of item and entities: 5 $(\mathbf{i}_t, \{\mathbf{e}_t^1, \mathbf{e}_t^2, ..., \mathbf{e}_t^k\})$. \triangleright Section 3.2; Read interest memory network M_I , get overall and 6 fine-grained interest distributions: $\mathbf{w}^{t}(i)$ and $\mathbf{w}^{t}(e)$. \triangleright Section 3.3.1 : Write User Memory Network M_{U} . \triangleright Section 3.3.2 ; 7 Write Interest Memory Network M_I . \triangleright Section 3.3.1; 8 Get *u*'s representation V_u . \triangleright Section 3.3.3; 9 Calculate overall objective function \mathcal{L} . \triangleright Section 3.4 ; 10 Back-propagate the gradients and update. 11

Thank you!